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Abstract	
Convolutional	neural	network	models	have	made	great	progress	in	various	fields	such	
as	computer	vision,	Smart	car	driving,	etc.	However,	the	large	number	of	weights	in	the	
model	makes	it	difficult	to	be	deployed	in	a	low‐memory	environment.	In	order	to	solve	
this	problem,	researchers	have	considered	single	model	compression	methods	such	as	
pruning,	 quantization,	 and	 low‐rank	 decomposition,	 Knowledge	 distillation	 and	
deployed	 them	 in	 practice.	 In	 this	 paper,	we	 propose	 a	 hybrid	model	 compression	
method.	We	prune	 the	model	by	using	 the	rank	size	of	 the	output	 feature	map	as	an	
important	basis	for	discriminating	filters,	which	can	effectively	consider	the	information	
of	 the	entire	network,	and	 then	perform	Tucker	decomposition	on	 the	convolutional	
layer	to	achieve	further	compression.	We	conduct	experiments	on	the	CIFAR10	dataset	
and	show	that	Hrank	Tucker	Combination	Compression	(HTCC)	achieves	up	to	85.8%	
over	a	single	pruning	and	tensor	decomposition,	reducing	Flops	by	82.1%.	At	the	same	
time,	the	accuracy	of	Resnet56	after	compression	is	only	reduced	by	less	than	2%.	
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1. Introduction	

Convolutional	neural	networks	have	become	an	important	tool	in	machine	learning	and	many	
related	 fields	 [1]–[4].	 With	 the	 continuous	 improvement	 of	 convolution	 neural	 network,	
convolution	neural	network	has	undergone	many	architectures	and	models,	which	achieve	
higher	 and	 higher	 accuracy.	 The	 earlier	 LeNet‐5	 [5]network	 was	 used	 for	 handwritten	
number	recognition.	Subsequently.	AlexNet[6]	reduced	over	fitting	by	using	Relu	activation	
function	and	dropout	 instead	of	 regularization,	and	won	 the	 first	place	 in	 ImageNet	 large‐
scale	visual	recognition	challenge	in	2012.	In	2014,	VGG	[7]network	proposed	to	replace	a	7	
*	7	convolution	core	with	three	3	*	3	convolution	cores	to	improve	the	resolution	of	the	model	
by	increasing	the	depth	of	the	model.	In	2015,	GoogLeNet[8]	adopts	a	new	structure	inception,	
and	the	error	rate	of	its	model	is	much	lower	than	that	of	VGG	on	ImageNet	dataset.	
Model	performance	 improvements	are	driven	primarily	by	deeper	and	wider	networks,	but	
these	usually	slow	down	the	execution	speed,	especially	on	resource‐constrained	devices.	For	
example,	 the	 ResNet56[3]	 network	 with	 56	 convolution	 layers,	 involves	 more	 than	 0.85M	
parameters	 for	storage	and	over	125.49M	floating	point	operations	 to	process	3232	color	
image.	Therefore,	on	the	premise	of	ensuring	accuracy,	it	is	necessary	to	reduce	the	complexity	
of	the	model.	Model	compression	is	an	effective	means	to	reduce	the	complexity	of	model,	which	
includes	model	pruning,	quantification,	 low	rank	decomposition,	knowledge	distillation.	The	
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core	of	quantification	 is	 to	convert	32‐bit	 floating‐point	data	 types	to	 fixed‐point	data	 types	
(16bit,	8bit,	4bit,	and	so	on).At	the	extreme,	the	model	weight	can	be	binary(0,1)[9]	or	ternary	
(0,1,‐1)[10].However,	when	quantifying	to	special	bit	widths	(0,	1	and	0,	‐1,	1),	many	existing	
training	 methods	 and	 hardware	 platforms	 are	 no	 longer	 applicable,	 requiring	 a	 dedicated	
system	architecture,	which	 is	not	 flexible.	The	core	of	knowledge	distillation	 is	 to	make	 the	
student's	network	better	learn	the	advantages	of	the	teacher's	network,	so	as	to	achieve	the	
effect	of	a	large	model	with	a	small	model.	Since	most	knowledge	distillation	networks	use	the	
output	of	the	softmax	layer	as	knowledge,	they	are	generally	used	for	classification	tasks	with	
the	 softmax	 loss	 function,	 and	 the	 generalization	of	 other	 tasks	 is	 not	 good.	The	 essence	of	
model	pruning	and	tensor	decomposition	 is	 to	reduce	the	original	parameters	of	 the	model.	
Model	pruning	removes	redundant	parameters	by	determining	the	importance	of	parameters.	
For	example,	Han	Song	et	al.	[10]	set	a	threshold	to	zero	the	parameters	below	the	threshold,	
convert	 the	 parameter	 matrix	 into	 a	 sparse	 matrix,	 and	 then	 retrain	 the	 network.	 Tensor	
decomposition	reduces	parameters	by	decomposing	the	convolution	kernel	tensor,	replacing	
part	with	the	whole,	thus	speeding	up	the	model.	For	example,	Denton	et	al.	[11]	approximates	
the	weight	matrix	with	a	singular	value	score	(SVD)	and	a	filter	clustering	scheme,	resulting	in	
a	two‐fold	acceleration	with	less	than	1%	loss	of	precision.	
The	above	research	mainly	focus	on	a	single	operation	of	the	model,	which	can	not	make	full	
use	 of	 the	 advantages	 of	 various	methods	 of	 model	 compression.	 In	 this	 paper,	 the	mixed	
operation	of	model	pruning	and	tensor	decomposition	is	mainly	focused	on	the	redundancy	of	
CNN	 model	 parameters.	 Compression	 model	 can	 combine	 the	 advantages	 of	 each	 model	
compression	method,	 improve	 the	 compression	 rate	 of	model	 compression	 and	 ensure	 the	
accuracy	of	the	model.	
In	summary,	the	contributions	of	this	study	are	as	follows:	
(a)	 We	 propose	 a	 two‐step	 model	 compression	 method	 (Hrank	 Tucker	 combination	
compression,	HTCC),	that	is,	we	first	structure	the	pruning	model,	and	then	further	compress	
the	model	by	tensor	decomposition.	
(b)	We	 compare	 the	 combination	 of	 filter	 pruning	with	 different	 pruning	 rates	 and	 tensor	
decomposition	 with	 different	 thresholds.	 Finally,	 experiments	 show	 that	 the	 combined	
compression	method	with	high	pruning	rate	and	low	threshold	has	a	good	effect.	
(c)	We	evaluate	our	method	on	CIFAR‐10	data	 set,	 taking	ResNet	model	 as	 an	example,	we	
achieved	a	compression	rate	of	up	to	85.8%,	reduced	flops	by	82.1%,	and	reduced	resnet56	
accuracy	by	less	than	2%.	
This	article	is	organized	as	follows:	we	review	the	work	related	to	model	pruning	and	tensor	
decomposition	in	Sect.	2.	In	Sect.3,	we	describe	a	model	compression	method	that	combines	
filter	pruning	with	tensor	decomposition.	 In	Sect.4,	we	conduct	experiments	under	different	
configurations	 and	 related	 ablation	 experiments.	 We	 draw	 our	 conclusions	 and	 give	 the	
prospect	of	this	study	in	Sect.5.	

2. Related	Work	

2.1. Pruning	
The	core	of	model	pruning	is	how	to	judge	the	importance	of	model	parameters.	The	current	
mainstream	model	 pruning	methods	 are	 divided	 into	 two	 categories,	 one	 is	 unstructured	
pruning,	the	other	is	structured	pruning.	In	earlier	studies,	Y	Lecun	[12]	proposed	Optimal	
Brain	Damage	 (OBD),	 the	basic	 idea	of	which	 is	 to	use	 second	derivatives	 to	 calculate	 the	
importance	score	of	parameters,	thereby	removing	the	insignificant	parameters.	Recently,	a	
Lottery	 Hypothesis	 theory	 has	 been	 proposed	 in	 [13].	 Experiments	 show	 that	 there	 is	 an	
optimized	sparse	subnetwork	structure	in	a	more	complex	deep	neural	network,	which	can	
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be	applied	to	model	compression.	Compared	with	the	original	network,	the	parameters	and	
complexity	of	the	sparse	subnetwork	are	much	lower,	but	the	inference	accuracy	is	basically	
the	 same.	Malach	 et	 al.[14]	 have	 theoretically	 proved	 the	 lottery	 hypothesis,	 a	 fully	 over‐
parameterized	neural	network	whose	random	initialization	weight	consists	of	a	subnetwork	
which	can	be	comparable	to	a	complete	network	without	additional	training.	All	the	above	
methods	are	based	on	gradually	removing	redundant	neurons	from	the	original	large	network	
to	the	small	network.	In	[15],	a	greedy	forward	selection	strategy	is	innovatively	proposed,	
which	builds	 a	 subnetwork	by	greedily	 adding	 the	best	neurons	 from	 the	empty	network.	
These	methods	belong	to	unstructured	pruning,	because	the	convolution	core	of	unstructured	
pruning	 is	 sparse,	 that	 is,	 there	 are	 many	 matrices	 with	 zero	 elements	 in	 them.	 Sparse	
matrices	 have	 limitations	 in	 that	 they	 cannot	 leverage	 existing	 mature	 BLAS	 libraries	 to	
achieve	additional	performance	benefits.	
Due	 to	 the	 limitations	 of	 unstructured	 pruning,	 the	 focus	 of	 current	 research	 on	 model	
pruning	is	mainly	on	structured	pruning.	Filter	pruning	[16]–[19]is	one	of	structured	pruning.	
Ding	 et	 al.	 [17]	 uses	 centripetal	 SGD	method	 to	 fold	multiple	 filters	 into	 a	 single	 point	 in	
parameter	 space	 and	 delete	 the	 same	 after	 training.	 This	 achieves	 the	 purpose	 of	 model	
compression.	 He	 et	 al.	 [20]presents	 a	 soft	 filter	 pruning	 (SFP)	 method	 to	 accelerate	 the	
inference	process	of	deep	convolution	neural	networks.	Specifically,	the	proposed	SPF	allows	
the	trimmed	filter	to	be	updated	when	training	the	model	after	trimming,	providing	space	for	
model	 optimization.	 In	 [21],	 a	 convolution	 kernel	 pruning	 (Filter	 Pruning	 via	 Geometric	
Median,	 FPGM)	 based	 on	 geometric	 median	 is	 proposed.	 It	 is	 worth	 noting	 that	 FPGM	
compresses	CNN	models	by	pruning	redundant	convolution	cores	instead	of	relatively	small	
convolution	cores.	In	recent	years,	with	the	rise	of	reinforcement	learning,	many	researchers	
have	derived	a	new	model	pruning	method	by	combining	it	with	model	pruning.	In	[22],	the	
author	has	designed	an	AMC	(AutoML	for	Model	Compression)	automatic	pruning	framework	
by	combining	it	with	the	reinforcement	learning	strategy.	An	automatic	structured	pruning	
framework	AutoCompress	based	on	Alternating	Direction	Method	of	Multipliers	(ADMM)	is	
proposed	in	[19].	

2.2. Tensor	Decomposition	
The	basic	principle	of	tensor	decomposition	is	to	reorganize	the	weight	matrix	or	tensor	and	
use	 the	 low	 rank	matrix	 or	 tensor	 to	 represent	 the	 original	matrix	 by	 the	 decomposition	
method,	 thereby	 reducing	 the	 number	 of	 parameters.	 Denton	 et	 al.	 [23]	 approximate	 the	
weight	matrix	by	singular	value	score	(SVD)	and	filter	clustering	scheme,	and	achieves	a	2‐
fold	acceleration	with	less	than	1%	loss	of	accuracy.	Zhang	el	at.[24]	considers	the	non‐linear	
response	 of	 the	 CNN	 and	 presents	 an	 asymmetric	 reconstruction	 method	 to	 reduce	 the	
cumulative	 error	 in	 the	 multilayer	 approximation.	 In	 addition,	 a	 low	 rank	 regular	
decomposition	 technique	 has	 been	 developed	 in	 [25]	 and	 satisfactory	 results	 have	 been	
obtained	on	large	networks.	To	make	better	use	of	the	low‐level	structure	of	the	weight	tensor,	
researchers	have	also	proposed	tensor	decomposition	algorithms,	such	as	CP	decomposition	
[26],	 Tucker	 decomposition	 [27],	 Tensor	 Train	 decomposition[28],	 Block	 Term	
decomposition	[29],	to	reduce	network	redundancy	using	a	low‐tensor	hierarchy.	

2.3. Combined	Model	Compression	
Model	compression	techniques	can	be	combined	to	achieve	better	compression	results.	For	
example,	 the	 combination	 of	 pruning	 and	 quantification,	 Ullrich	 et	 al.	 [30]	 based	 on	 the	
regularization	 item	 of	 Software	weight	 sharing,	 implemented	 parameter	 quantization	 and	
parameter	 pruning	 during	 the	 model	 retraining	 process.	 Tung	 et	 al.	 [31]	 proposed	 the	
integrated	 compression	 and	 acceleration	 framework	 Compression	 learning	 by	 in	 parallel	
pruning‐quantization	(CLIP‐Q).	In	combination	of	quantification	and	knowledge	distillation,	
Polino	et	al.	[32]	proposed	a	quantitative	training	method	with	knowledge	distillation	loss.	
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There	are	floating	point	model	and	quantification	model.	The	quantification	model	calculates	
the	forward	loss	and	calculates	the	gradient	to	update	the	floating	point	model.	Before	each	
forward	 calculation,	 the	 quantification	 model	 is	 updated	 with	 the	 updated	 floating	 point	
model.	A	combination	of	pruning	and	knowledge	distillation,	Xie	et	al.[33]proposed	a	method	
for	extracting	knowledge	into	a	pruning	model	to	reduce	parameters.	

3. Methodology	

Our	proposed	method	aims	to	explore	a	new	combined	model	compression	method,	which	
further	improves	the	compression	rate	by	combining	the	advantages	of	pruning	and	tensor	
decomposition.	In	this	section,	we	describe	the	details	of	the	filter	pruning	method	and	the	
Tucker	decomposition	method	used	for	model	compression.	

3.1. Filter	Pruning	
Filter	pruning	 is	 a	kind	of	 structured	pruning,	 and	 the	method	 to	 judge	 the	 importance	of	
filters	 is	 the	 core	 part	 of	 the	 filter	 pruning	 algorithm.	 Li	 et	 al.	 and	 He	 et	 al.	 judged	 the	
importance	of	the	filter	by	the	L1	norm	criterion	[34]	and	the	L2	norm	criterion	[20].	Luo	et	
al.	[35]	pruned	the	filter	by	the	next	level	of	statistical	information.	Inspired	by	Lin	et	al.	[16],	
we	use	the	rank	of	the	output	layer	to	judge	the	importance	of	the	filter.	For	two	successive	
convolution	operations,	deleting	the	first	convolution	filter	results	in	the	corresponding	kernel	
being	deleted	in	the	next	convolution,	as	shown	in	Fig	1.	The	different	methods	described	above	
are	essentially	 the	same,	 so	we	can	convert	 the	 filter	pruning	problem	 into	an	optimization	
problem	based	on	specific	rules,	removing	unimportant	filters	through	specific	rules.	Assume	a	
pre‐trained	CNN	model	has	a	set	ofK convolution	layers,	and	 iC is	the i th 	convolution	layer.	
The	parameters	are	represented	as	a	set	of	3D	filters	 1

1 2{ , , ..., } i i i i
i

i

n n k k
nC

W w w w     ,where	

the j th filter	is 1i i in k ki
jw

   , in represents	the	number	of	filters	in	the	filter	and	 ik is	the	kernel	

size.	The	outputs	of	filters	are	represented	as	  1 2 3, , ,..., i i i
i
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reserved	and	the	u th 	filters	to	be	removed.	We	use	 1in 	and	 2in 	as	the	number	of	important	
and	non‐important	filters,	respectively.	
The	purpose	of	 filter	pruning	 is	 to	eliminate	 the	unimportant	 filters	 in	 the	neural	network, 
which	can	be	turned	into	an	optimization	problem:	
	

1 1

21

min ( )

. .

i

ij

i

K n i
ij ji j

n

ij ij

L w

s t n






 




 


																																																																									(1)	

	

where ij is	an	indicator	which	is	0	if i
jw is	grouped	to iC

J or	1	if	 i
jw is	grouped	to iC

U . ( )ijL w is	a	

measure	 of	 the	 importance	 of	 filter	 input	 to	 CNN.	 Thus,	 an	 unimportant	 filter	 is	 deleted	
according	to	Eq.	(1).	Filter	pruning	is	shown	in	Fig	1.	



Frontiers	in	Humanities	and	Social	Sciences	 Volume	2	Issue	4,	2022

ISSN:	2710‐0170	
	

150	

		
Fig	1.	Filter	pruning	

3.2. Tucker	Decomposition	
Tensor	 decomposition	 is	 a	 concept	 based	 on	 linear	 algebra,	 which	 is	 called	 singular	 value	
decomposition	 (SVD).	Tucker	decomposition	 is	 actually	 a	 generalization	of	 SVD	 [27].	 In	 the	
study	of	model	compression	and	acceleration,	tensor	decomposition	has	been	widely	used	as	
the	decomposition	of	convolution	layer[26]–[29]	and	full	connection	layer[23]	in	CNN.	
For	CNN,	the	convolution	layer	can	be	regarded	as	a	4D	tensorKwith	the	size	of	 out inC C h w   ,	

Where inC and outC represents	 the	 input	 of	 the	 convolution	 layer	 and	 the	 output	 of	 the	

convolution	layer,	and	 ,h w 	denotes	the	spatial	size	of	the	tensor.	The	size	of	the	input	feature	
graph	 is	 expressed	 as	 inH W C  ,	 and	 the	 size	 of	 the	 output	 feature	 graph	 is	 expressed	 as	

' '
outH W C  .	 The	 rank	 ‐	 (R1,	 R2,	 R3,	 R4)	 Tucker	 of	 the	 4D	 tensor	 (along	 all	 its	modes)	 is	

decomposed	into	a	core	tensor	G 	and	a	set	of	factor	matrices	 1 2 3 4, , ,U U U U .	As	shown	in	Eq2:	

31 2 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4
, , , , , , , j, , ,

1 1 1 1

RR R R

i j s t r r r r i r r s r t r
r r r r

K G U U U U
   

        																																							(2)	

where	 the	 size	 of	 G 	is	 1 2 3 4R R R R   	and	 the	 size	 of	 factor	 matrix	 1 2 3 4, , ,U U U U 	is	

1 2 3 4, , ,out inC R C R h R w R    .		

Decomposition	along	the	spatial	dimension	can	lead	to	spatially	separable	convolution,	but	in	
Tucker	 decomposition,	 we	 do	 not	 decompose	 model‐1	 and	 model‐2	 related	 to	 the	 spatial	
dimension	 [27],	 because	most	 of	 their	 sizes	 are	1 1 3 3 5 5  ， ， ,	 separable	 convolution	 cannot	
save	a	lot	of	calculation.	Therefore,	the	above	Eq.	(2)	is	converted	to	Eq.	(3):	

3 4

3 4 3 4

3 4

3' 4 '
, , , , , , , ,

1 1

'
R R

i j s t i j r r s r t r
r r

K G U U
 

    																																																													(3)	

where	the	size	of	 'G is 3 4R R h w   .	

According	to	the	above	description,	the	changes	of	parameters	and	Floating‐point	operations	
(Flops)	before	and	after	convolution	can	be	compared,	as	shown	in	Table	1.	
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Table	1.	Comparison	of	parameters	and	Flops	before	and	after	Tucker	decomposition	

Type	 Convolution	 Tucker	decomposition	

parameters	 out inC C h w   	 3 4 3 4in outR R h w R C R C       	

Flops	 ' '
in outH W C C h w     	

' '
3 in 3 4

' '
out 4

H W R C H W R R h w

H W C R

        

   
	

	
Rank	 (R3,	 R4)	 is	 a	 very	 important	 Hyperparameter	 that	 controls	 the	 balance	 between	
performance	(memory,	speed,	energy)	improvement	and	accuracy	loss[27].	In	this	paper,	we	
use	 Variational	 Bayesian	 Matrix	 Decomposition	 (VBMF)	 to	 select	 rank.	 VBMF	 has	 been	
sufficiently	validated	in	[27],	[36]	to	provide	better	results	than	previous	manual	debugging	
and	the	use	of	alternating	least	squares.	

3.3. Our	Approach	
We	use	a	layer‐by‐layer	pruning	method	to	prune	the	filter,	and	determine	the	importance	of	
the	filter	by	the	rank	of	the	output	layer.	Lin	et	al.	[16]	show	that	a	small	number	of	images	can	
effectively	estimate	the	average	rank	of	each	output	signature	in	different	architectures,	and	
then	 prune	 the	 filter	 based	 on	 the	 rank	 of	 the	 output	 signature.	 The	 proportion	 of	 filters	
removed	requires	a	threshold	parameter	that	provides	a	trade‐off	between	space	and	accuracy	
by	controlling	the	number	of	filters	to	trim.	Since	we	use	layer‐by‐layer	pruning,	we	need	to	set	
the	pruning	rate	for	each	layer	manually.	We	experimented	on	a	Cifar‐10	dataset	with	an	initial	
learning	rate	of	0.01,	a	time‐varying	0.001	for	the	fifth	and	a	0.0001	for	the	tenth	rounds.	For	
each	layer,	we	do	30	rounds	of	retraining	after	trimming.	For	each	trimmed	convolution	layer,	
we	use	Tucker	decomposition	to	further	reduce	the	model	parameters	and	computations.	The	
compression	mechanism	of	HTCC	is	shown	in	Fig	2.	
For	pruning,	the	input	feature	map	size	is inH W C  ,	the	convolution	layer	can	be	represented	

as	 out inC C h w   ,	the	output	feature	map	size	is ' '
outH W C  ,	and	the	output	feature	size	of	

the	next	 layer	 is	 '' '' '
outH W C  .	When	an	unimportant	 set	 of	 filters	 a	 is	 removed	 iC

U and	an	

important	 set	 of	 filters	 iC
J 	is	 retained,	 outC 	converts	 J

outC and	 the	 next	 convolution	 layer	 is	

represented	as	 ' ' 'J
out outC C h w   .	

Thus,	the	number	of	parameters	is	reduced	from:	
N:	 ' ' '

out in out outC C h w C C h w       	

to:	
NP: ' ' 'J J

out in out outC C h w C C h w       	

Regardless	 of	 the	 next	 layer	 of	 pruning,	 Tucker	 decomposition	 reduces	 the	 number	 of	
parameters	to:		

NPT: ' ' ' ' ' '
3 4 3 4 3 4 3 4

J J
in out out outR R h w R C R C R R h w R C R C               	

In	 fact,	 more	 parameters	 are	 reduced,	 because	 the	 filter	 pruning	 operation	 has	 been	
implemented	for	the	next	convolution	layer	before	Tucker	decomposition.	In	order	to	simplify	
the	reasoning	process,	we	do	not	make	it	clear.	As	the	number	of	parameters	decreases,	the	
amount	of	Floating‐point	operations	also	decreases.	
For	pruning,	Flops	are	reduced	from:	

F:	  ' ' '' '' ' ' '
out in out outH W C C h w H W C C h w            	
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To:	

FP:	  ' ' '' '' ' ' 'J J
out in out outH W C C h w H W C C h w            	

Regardless	of	the	next	layer	of	pruning,	Tucker	decomposition	reduces	Flops	to:	

FPT:
' ' ' '

3 4 3 4

'' '' ' ' ' ' ' ' ' '' '' '
3 4 3 4

J
in out

J
out out

H W R R h w H W R C H W R C

H W R R h w H W R C H W R C

              
               

	

The	compression	ratio	of	decomposition	is	represented	as:	

PT

N
M

N
 																																																																																		(4)	

	

PT

F
E

F
 																																																																																					(5)	

	
Actually,	 M and	 E is	 smaller.	 Because	 we	 do	 not	 consider	 the	 next	 filter	 pruning.	 The	
compression	process	of	HTCC	is	shown	in	Fig	3.	

	
Fig	2.	Compression	mechanism	of	HTCC	

	

	
Fig	3.	The	process	of	the	HTCC	method,	first	pruning	the	pre‐training	network,	then	

decomposing	the	Trucker,	requires	the	final	compressed	network	
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4. Experiments	

We	analyze	the	performance	on	CIFAR‐10,	comparing	against	several	popular	CNNs,	including	
ResNet56	and	VGG‐16.	

4.1. Results	on	ResNet56	
We	validated	our	approach	by	training	the	ResNet56	network	on	the	CIFAR‐10	dataset.	First,	
we	 controlled	 the	 pruning	 rate	 to	 70%	 by	 adjusting	 the	 pruning	 threshold	 of	 each	 layer,	
resulting	in	a	1.55%	reduction	in	model	accuracy	after	pruning.	By	Tucker	decomposition	of	
the	pre‐training	model	alone,	the	parameter	quantity	of	the	model	is	reduced	by	35.2%,	and	the	
calculation	amount	 is	reduced	by	47.73%,	but	 the	accuracy	of	 the	model	 is	only	reduced	by	
0.22%.	This	may	be	because	the	higher	rank	has	more	useful	information	when	choosing	rank	
in	VBMF.	Tucker	decomposition	of	the	pruned	model	further	compresses	the	model	parameters	
to	85.8%,	reduces	the	computational	effort	to	82.1%,	and	reduces	the	accuracy	by	only	1.89%.	
As	shown	in	Table2.	
	

Table	2.	Compressing	results	of	ResNet‐56	on	CIFAR‐10	
A:	Pruning		B:	Tucker	decomposition	

Model	 Params	 Flops	 Accuracy	

Resnet5(baseline)	 0.85M(0.0%)	 125.49M(0.0%)	 91.87%	

Resnet56(A)	 0.24M(70.0%)	 34.78M(74.1%)	 90.32%	(‐1.55%)	

Resnet56(B)	 0.55M(35.2%)	 65.59(47.73%)	 91.65%	(‐0.22%)	

Resnet56(A+B)	 0.12M(85.8%)	 22.48M(82.1%)	 89.98%	(‐1.89%)	

	
To	verify	the	advantages	of	HTCC,	we	compare	it	with	the	single	pruning	method	and	the	single	
tensor	decomposition	method.	The	experimental	results	are	shown	in	Table	3.	

Table	3.	Compressing	results	of	ResNet‐56	on	CIFAR‐10	

Model	 Params	 Flops	 Accuracy	

Resnet56	 0.85M(0.0%)	 125.49M(0.0%)	 91.87%	

Hrank[16]	 0.27M(68.1%)	 40.31M(67.8%)	 90.43%	

GBN[37]	 0.54M(53..5%)	 75.41M(60.1%)	 91.54%	

Tucker[27]	 0.55M(35.2%)	 65.59(47.73%)	 91.65%	

HTCC(Ours)	 0.12M(85.8%)	 22.48M(82.1%)	 89.98%	

4.2. Results	on	VGG‐16	
We	validated	our	approach	by	training	the	VGG‐16	on	the	CIFAR‐10	dataset.	First,	we	controlled	
the	pruning	rate	to	70%	by	adjusting	the	pruning	threshold	of	each	layer,	resulting	in	a	1.08%	
reduction	in	model	accuracy	after	pruning.	By	Tucker	decomposition	of	the	pre‐training	model	
alone,	 the	 parameter	 quantity	 of	 the	model	 is	 reduced	 by	 43.9%,	 and	 Flops	 is	 reduced	 by	
32.27%,	but	the	accuracy	of	the	model	is	only	reduced	by	0.41%.	Tucker	decomposition	of	the	
pruned	model	further	compresses	the	model	parameters	to	91.12%,	reduces	the	computational	
effort	to	72.05%,	and	reduces	the	accuracy	by	only	1.88%.To	verify	the	advantages	of	HTCC,	we	
compare	VGG‐16	with	the	single	pruning	method	and	the	single	tensor	decomposition	method.	
The	experimental	results	are	shown	in	Table	4	and	Table	5.	
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Table	4.	Compressing	results	of	VGG‐16	on	CIFAR‐10	
A:	Pruning		B:	Tucker	decomposition	

Model	 Params	 Flops	 Accuracy	

VGG‐1(baseline)	 14.98M(0.0%)	 313.73M(0.0%)	 92.76%	

VGG‐16(A)	 4.49M(70.0%)	 131.17M(58.1%)	 91.68%	(‐1.08%)	

VGG‐16(B)	 8.56M(43.9%)	 212.47(32.27%)	 92.35%	(‐0.41%)	

VGG‐16(A+B)	 1.33M(91.12%)	 87.69M(72.05%)	 90.88%	(‐1.88%)	

	
Our	method	was	compared	with	Hrank	[16]and	GBN[37]	pruning	.	Compared	with	Hrank,	our	
parameters	were	reduced	by	17.7%,	Flops	by	14.3%,	and	accuracy	by	only	0.45%.	Compared	
with	Tucker	decomposition	alone,	the	parameters	were	reduced	by	50.6%,	the	Flops	by	34.37,	
and	 the	 accuracy	 by	 1.67%.	 The	 experimental	 results	 show	 that	 pruning	 and	 tensor	
decomposition	alone	do	not	fully	reduce	the	number	of	parameters	and	operations.	Our	method	
combines	the	advantages	of	pruning	and	tensor	decomposition	to	obtain	a	higher	compression	
rate	while	ensuring	accuracy.	In	addition,	we	validated	our	method	on	VGG‐16,	and	the	results	
show	that	in	Table	4	and	Table	5.	
	

Table	5.	Compressing	results	of	VGG‐16	on	CIFAR‐10	

Model	 Params	 Flops	 Accuracy	

VGG‐16	 14.98M(0.0%)	 313.73M(0.0%)	 92.76%	

Hrank[16]	 2.88M(88.8%)	 142.36M(54.2%)	 91.73%(‐1.03%)	

GBN[37]	 6.68M(55.4%)	 180.39M(42.5%)	 91.89%(‐0.87%)	

Tucker[27]	 8.56M(43.9%)	 212.47(32.27%)	 92.35%(‐0.41%)	

HTCC(Ours)	 1.33M(91.12%)	 87.69M(72.05%)	 90.88%(‐1.88%)	

4.3. Ablation	Study	
During	 the	 experiment,	 we	 found	 that	 different	 combinations	 of	 trimming	 and	 Tucker	
decomposition	thresholds	had	biased	results.	As	shown	in	Figure	4,	Tucker	decomposition	with	
low	thresholds	and	high	pruning	rate	had	better	results.	

	
Fig	4.	Various	combinations	of	pruning	and	Tucker	decomposition	

	



Frontiers	in	Humanities	and	Social	Sciences	 Volume	2	Issue	4,	2022

ISSN:	2710‐0170	
	

155	

HTCC1	indicates	high	threshold,	HTCC2	indicates	medium	threshold	and	HTCC3	indicates	low	
threshold.	The	overall	graph	shows	that	the	accuracy	of	the	model	decreases	with	the	increase	
of	pruning	rate,	but	HTCC3	performs	better	when	the	pruning	rate	is	between	60%	‐	70%.	

5. Conclusion	

In	 this	 work,	 our	 experimental	 results	 show	 that	 compared	 with	 pruning	 and	 tensor	
decomposition	alone,	the	combination	of	pruning	and	Trucker	decomposition	can	obtain	higher	
compression	 rate,	 less	 computation,	 and	 maintain	 good	 accuracy.	 At	 the	 same	 time,	 we	
experimentally	verify	that	the	Tucker	decomposition	combination	with	high	pruning	rate	and	
low	threshold	has	better	comprehensive	performance	in	the	compression	process.	The	main	
research	focus	in	the	future	is	to	introduce	the	quantitative	method	into	HTCC	to	obtain	better	
compression	performance.	
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